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The interaction energy of the isotropic indirect nuclear spin-spin coupling in 
nuclear magnetic resonance is 

EAB = h dABIA. IB, (1) 

where JAB is the coupling constant between the nuclei A and B. The theoretical 
formulation has been given by Ramsey [1], who showed that EAB can be written 
as a second-order energy 

E.B = Z' (E0- I Fxl r162 I FBI r (2) 
n 

The summation over n includes an integration over the continuum. For proton- 
proton coupling the most important contribution to F is the Fermi-contact 
interaction [2, 3] 

FN= h~x E 8(rkzc)$k.IN, (3) 
k 

where AN=8flhVN/3, and the symbols have their usual meaning. We need a 
complete knowledge of the wave functions of the ground state as well as the 
excited states (including the continuum) in order to apply equation (2). Three 
methods have been used in order to overcome this difficulty: 

(a) In the simplest calculations En-Eo is replaced by a constant energy AE, 
simplifying equation (2) to 

gAB = -- AE-I(~boIF*FB[ ~bo). (4) 

Although AE is defined exactly by this procedure, the usual interpretation as 
an average excitation energy is only correct if (~b0[ FA[ ~bn)(r ~bo) has the 
same sign for all n, which is often not true. Consequently no criterion exists for 
choosing AE, and negative values might even be necessary [4, 5]. Therefore this 
approach has been abandoned almost completely nowadays. 

(b) When approximation (a) is avoided the excited states are usually represented 
by a finite set of discrete levels, constructed from the virtual orbitals that are 
obtained with an approximate solution for the ground state of a molecule [6-9]. 
The only justification for such a procedure would be that these excited states 
were a very good set for expanding the first-order perturbed wave function. 
However, extensive calculations on the HF molecule indicate that large 
contributions of opposite sign arise from even the highest excited states [10, 11]. 
This casts serious doubts on the theoretical justification of the usual schemes 
and their success must depend heavily on empirical parametrization. 

~- Present address: Philips Research Laboratories, Eindhoven, The Netherlands. 
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(c) A third alternative is to solve equation (2) variationally [5, 12-16]. We 
shall start with the Hylteraas functional for the second-order energy [5, 17] 

W(Z) = 2<4~r F[ r + <~7(1~ [ ~ f o -  Eo[ if('>, (5) 

where ~1) is the trial first-order perturbed wave function and F = F a + F B .  By 
expanding 

F= VAIA + VBIB (6a) 
and 

~1> = ~AIa + ~ r B  (6b) 

we can write W(Z) as the sum of three terms: 

W (z) = WAAIA 2 + WBBIB 2 + WABIA. IB. (7) 

The cross term WAs is a variational approximation to hdAn and is given by 

WAB=2(~A[VBIr (8) 

By making WAs stationary the first-order perturbation equations for ~A and 
~n are satisfied. However, just as in the case of the chemical shift [18] we cannot 
make a decision about the sign of the second-order variation, because WAS is a 
cross product. Consequently there is only a stationary principle for WAs and 
no minimum principle. Taking ~A as a linear combination of known functions 
5bA~ we get a linear variation problem that leads to the final formula 

JAn-- -(2/h) E Y <r g n l  r (9) 

which is similar to that of Armour and Stone [19]. Applied to a specific molecule 
the integration over the electron spins can be carried out explicitly. 

An alternative approach has been advocated [14] in which one of the self- 
coupling terms WAA or WnB is minimized. From this also a stationary value 
for WAs can be calculated but again this is not a bound to h JaB. Moreover, the 
form (3) of the Fermi-contact term is a simple approximation to the real relativistic 
equations and is valid only up to the first order in perturbation theory [3, 5]. 
Consequently the perturbation series for WAA and Wnn do not converge [5, 14] 
and the values obtained for these quantities are meaningless. Nevertheless it 
might be argued that minimizing WAa or Win3 is still a valid technical procedure 
to get a stationary WAS [14]. WAB itself contains the product of two different 
functions and so is acceptable. Therefore we shall restrict our attention to WAs. 

The fact that  we have only a stationary principle for the coupling constant 
and no minimum principle has some important consequences: (a) It is possible to 
get the right answer accidentally. Consequently agreement with experiment is 
no criterion for the accuracy of the wave function. (b). Increasing the size of 
the basis does not necessarily improve the result, and might lead to oscillations 
around the correct value. Only when there are; clear indications of convergence 
can one be confident of the results. 

Despite this gloomy situation we tried to calculate variationally the coupling 
constant in HD. In this case we can use information about ~b(1) from the hydrogen 
atom. The first-order perturbation equation for the hydrogen atom in the presence 
of a ~ function, 

= - (8(r)/r 2 -  (10) 
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can be integrated directly to give [20] 

r = (2/~/7r)(2 In r -  1/r + 2r + C) exp ( - r ) ,  (11) 

where C is a constant. So besides the normal ls and 2s-type functions two 
singular functions occur which we shall denote by 0s and lns. T h e  second-order 
energy evaluated with this wave function and a 8 function is clearly - 0 %  which 
confirms our previous statement that the self-coupling energy should be redefined. 
However, it may be essential to include these singular functions in the basis for a 
variational calculation of dieD. 

For the H D  molecule we took an orbital exponent of 1.2. In order to decide 
about the basis functions describing the spin polarization at the other atom (e.g. 
the deuterium atom when the Femi-contact  term is situated on hydrogen) we 
did some preliminary calculations. As expected the inclusion in ~I-I of a ls 
function on deuterium is essential, while the addition of a 2s function seems to 
be unimportant.  Therefore  the best simple basis for ~1~ is probably: lsri, 2sri, 
0sri, lnsrI and lso.  A similar basis is used for ~D. Th e  necessary new one 
and two-electron integrals with the 0s function can be evaluated using standard 
methods [21, 22]. However,  the Ins function leads to complications. For  the 
ground state we shall use the first three functions from table 1. Two properties 
of r are important for the coupling constant: the probability of an electron 
being at a nucleus and the amount  of electron correlation [16]. As the first 
quantity is about constant the differences in coupling can be attributed to differences 
in electron correlation. 

Eto~ (A.U.) Ebond (ev) <~(r)> (A.U.) 

Coulson MO (~ = 1 "19) 
Wang YB (~ = 1" 17) 
James and Coolidge (13 terms) 
Ko/os and Roothaan (50 terms) (a) 

- 1-1282 3"488 0"4517 
- 1"1390 3"784 0"4520 
- 1"1735 4"721 0"4502 
-1 .1 7 4 4 (~  4.747 ~) 0.4571 ~) 

(a) At R = 1"4009 h.u, 
(b) Equal to the experimental value, 
(c) One should be careful in interpreting this as the exact value as the KoIos-Roothaan 

function does not satisfy Schr6dinger's equation at the origin (ref. [16]). 

Table 1. Some ground-state wave functions of H~ (R = 1"4 h.u.). 

The  results for various sizes of the basis are given in table 2. We see that a 
basis of ls and 2s gives a reasonable, though somewhat high, result. Unfortunately 
this is vitiated when the 0s function is included. As the value for J~D  is now 
too low there are two possibilities when the lns function is added. Either we 
get a further decrease and a worse result, or the lns function compensates more 
or less for the decrease caused by the 0s function. In the latter case, however 
we cannot say that there are any indications of convergence on extension of  the 
basis. So even if basis I I I  plus lns gave perfect agreement with experiment, 
we could not draw any conclusions because of the oscillatory behaviour of the 
results. Therefore  we did not continue with the Ins function for which no result 
is given. Extension of the basis of l s and 2s with normal 3s and 2p-type functions 
leads also to a poorer result. 
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Basis for CH Ground state 
(g---1.2) MO (g--1 "19) VB (g=1.17) JC (13 terms) 

I lsm lsD 104"2 132.8 110"8 
II lsm 2sm lSD 39"8 65 "4 45 "8 

III lsm 2sm 0sm lSD 18"2 31 "2 21 "4 
IV 1sin 2sin 3sin 2pcm 2Wrm 53"7 (a) 

lsD, 2SD, 3SD, 2paD, 2pzrD 
Experimental 43" 0 (b) 

(a) Ref. [16]. 
(b) T. F. Wimmett, 1953, Phys. Rev., 91, 476. 

Table 2. Variational results for J~D (rIz). 

Thus at present there would seem to be no satisfactory method for an ab 
initio calculation of a nuclear spin-spin coupling constant. The approximation 
of the perturbation series using a finite series of excited states gives convergence 
problems [11], while the variation method leads to unreliable results because of 
the existence of a stationary principle and not a minimum principle. 

The  author wishes to express his gratitude to Professor J. N. Murrell for 
valuable discussions and to the Royal Society for the award of a fellowship in the 
European exchange programme. 
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