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k simple physical picture is given of Fellncr-Feldegg’s thin celi method in time dokin spectsoscapy. From this 
pic!ure an accurate analytical relstion is derived for the total reflection coefficient. 

‘, 
1. Introduction 

_’ 

Air .%m@e Ai- 

-As an alternative to frequency domain methods 
time domain spectroscopy‘(TDS) methods can be ap- .. cr) 

plied to the study of the dielectric behaviour of polar . . 
materials II-33 , These methods ah involve the 
propagation of a step voltage in a coaxial line partly 
ftied with the dielectric material. From the change in 
the shape of the step after, e.g., reff ection against the 
interface air-dielectric, the dielectric properties of . 

the material can be found. 
In this letter a simple physical picture of Fellner- 

.a,i., I+; ; 

5’ : 
Feldegg’s thin cetl method [4,5] will ba‘given in terms 
of lumped elements. From this picture an expression 
‘for the total reflection coefficient will be derived. Fig, 1, (a) Coaxial line containing dielectric sample. (b) Equiv- 
This new relation will be compared with the exact aknt circuit u~g.lumped elements. 

beha~our and with Fellner-Feldegg’s thin cell relation. 

vacuum, @ and a-the outer and inner diameter OF the 
2.‘Lumped eIement pi&we of the’thin eel1 mktbhod coaxial line, 20, the characteristic impedance of the 

.’ empty line,‘is given by 
In the thin cell method the sample is pIaced as in- 

dicated in fig. 1 a. Taking the-sample length to be 1 
20 7 [Ljil)~“‘= bc/21T) In(bjk) ,- : (2) 

much smaller than the wavelengths of interest the where C is the velocity of light in va&um. The ret&- 
equivalent circuit of fig. 1 b can be expected to apply: ,’ ti.orrcoeffcient of the above network is 
LandCaregivenbyf6] .. R(G) = [@w) --~ZO]~(z(iw) f Z,I , (3) 
+‘=(p/2z)In(27&1) ;, _ ‘. (la) .’ 

.with ,... 
,- 

_: C=2nefhln(b~!l). .’ ” (ib) Z(i0j 7 iwL1/2 f ~o/(l,+icAYZo) .i C4) . . 
e-and g are the permittititi atid permeability of ,: Using eqs: (l),(Z) and (41, eq. (3) tea+ to. 
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R(iw) =$$ [1_,+($!$] ~ . . .” ,:, 1. &; 

x [I ig(l+r)+.($(j +$..ql . .,(S) .,I - 

This equation has the interesting property that th‘e -m 
relation between R(iw) and E(Jw) is bi-linear, which is 
important for practical applications. For smali values 
ofwI/Z!c, eq. (5) can be approximated by 

R(im) = iWl I--E 
2c 1 +(iwI/2c)(l f!j _ ,’ 

(6) ,- -az- 

Relations (5) and (6) have been compared with the 
exact reflection coefficient given’by [4,5] 

0 .I 2 3 

- VG 

R(b) = p(iw) 
1 -exp {-(2Z/c)iwe”*] 

1 -p2(iw) exp [-(ZZ/c)iw8’” ] ’ 
(7) 

where 

p(iw) = (1 --~“~)/(l +ei/T) , @I 

and with Fellner-Feldegg’s original‘thin cell relation 

F&.2. Calcuhted step response behavior for co = 20, em = 
4, ~I/cs,J = 0.1. 1: Exact response using eq. (7). 2: Response 
using the oridnal thin &U relation eq. (9). Q: Response using 
eqs. (5) and (6). For this c3se no significant difference is ob- 
served between these two relations. 

R(k) = iw(l/2c) (l-e),:. (9) used in general to analyse the pennittivity directly in 
the time dcmain. 

This comparison has beer! made by computing The goal results of eqs. (5) or (6) can be under- 
numerically the step response <&using for R(s) the stood from the fact that their Taylor expansions in 
relations @j-(7) and (9), respectively. The step w1/2c are up to .second order equal to the Taylor ex- 
response is defined as pansion of .the exact ‘reflection coefficient eq. (7). As 

-&J. ,. 
an alternati-qe, therefore, this expansion IJP to second 

ds exp (sr) [R(s)/s] =, F -I [R(s)/sj , 
order in &‘2c cou!.d be also used. However, the rela- 

d-_im (10) 
tion between R(k) and E(iw) is then quadratic, while 

where s =“/ + iw (7, o real) and’ L-l denotes the in- 
conducti,vitjr cannot be included as well as in eqs. (S) 

verse Laplace operator. For convenience we have 
or(6) (see the next section). 

chosen a.Debye p_e_kittivity relation to represent 
e(iw), thus ’ 3. Conductive matqia!s 

e(G) = ,, -+ (EO-eE,)/(l +i&$ , y(H)- .‘, 

where e _,, ed and r. are the perkittivity at high 
If the low frequency conductivity u cannot be 

neglected relative Jo the dielectric loss, thi term. 
frequencies,-the staiic pennittivity and the relaxation u/&L has to be added to <(ia) in all the,relations 
time, respectively. me numerical computations have used. Thus ~.i. (9) changes to- [4] _ 
been carried out with a procedure developed by Steh- 
fest [7],. The ieklts, using e. = 20, e, = 4 gnd 21fc~~ 

R(icJ) =i*{(!/&j[l - r(k)] ‘- (1/2C) OlEiti) , (12) 

=O.l, are shown in fig.,2. We conclude that-for,this 
par+& cask where the thin cell, rektion eq. (4) -. 

leading to, [Lb, 51 

~gives already a substantial deviation from,the. exact 
<t) = (1/2C) L-l’ [Em - E(S)] - (l/2$ U/E . (13) 

::re$dnse, e&. (5) an!, (6) are still very good approxi- 
‘matick Unfortunately~theskequations’ca~~ot be 

Hence the ‘influence of & dondukivity is to produce 
. . an offset of ?&he base line. Therefore, if the thin cell 
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~~~r~~i~~tion ~s.s~f~ci~ntly accuiate the pulse-’ 
response, of the permittivjty can be dete~ined 
separately ‘from the vaIua of the conductivity: How- 
ever, ihe exact relation describing the offset of the base 

replace the more approximate ori@in& thin cd da- 
tion. The practical applicability of the formuIae ob- 
tained,wifi be discussed elsewhere [S] : 

.’ ‘. 
line is [5] 

introducing conductivity in eq. (6) gives 
. c 

R(icd) = g 
1-E---IJIf5” ,, 

2c +fiwrf2c)(l +e)+(~/Zc)o/e 3 . 
05) 

From this equation the offset of the base l&e is pre- 
dicted to be equal to the exact ‘relation (i4). The ., 
Gme holds true if conductivity is introduced in eq. (5). 
Consequently the lumped elemenr model (r”lg. 1 b) 
predicts correctly the value of the offset of the base 
he, independent of the values of I and o. Further- 
more, a numerical calculation of r(t) computed from 
eq. (15) gives the same sort of agreement with the 
exact step response as shown in fig. 2 for the case 
without conductivity. 

We conclude that the lumped element picture of 
fig, lb provides simple and accurate formulae to 
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