Dynamics of fluctuations in smectic membranes

Wim H. de Jeu

FOM Institute AMOLF

Amsterdam, The Netherlands
1. Introduction to smectic membranes
 Smectic phases
 Dimensionality, ordering and fluctuations
 Smectic membranes studied by x-ray reflectivity

2. Static x-ray scattering
 Displacement correlation function
 Fluctuation profiles

3. Dynamic methods: XPCS and NSE
 Coherent x rays
 X-ray photon correlation spectroscopy
 Neutron spin echo

4. Dynamics of smectic fluctuations
 Theoretical fluctuation modes
 Experimental results

Conclusions
Structure and fluctuations of smectic membranes

Wim H. de Jeu
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

Boris I. Ostrovskii
Institute of Crystallography, Russian Academy of Sciences, 117333 Moscow, Russia

Arcadi N. Shalaginov
Department of Physics and Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1, Canada

pages 181-235
Contents

1. Introduction to smectic membranes
 - Smectic phases
 - Dimensionality, ordering and fluctuations
 - Smectic membranes studied by x-ray reflectivity

2. Static x-ray scattering and conformality

3. Dynamic methods: XPCS and NSE

4. Dynamics of smectic fluctuations

Conclusions

Issues and outlook
Smectic liquid crystals

Smectic liquid-crystal phase:
- orientationally ordered elongated molecules
- stacked liquid layers
- distribution centers of mass:

\[f(z) = \frac{2}{d} \sum_{n=0}^{\infty} \tau_n \cos(nq_0 z) \]

- smectic order parameters:

\[\tau_n = \langle \cos(2\pi nq_0 z) \rangle \]
Smectogenic molecules

K 34 SmA 53.5 N 71.5 I

7AB

K 33 CrB 48.5 SmA 63.5 N 73 I

4O.8

K 72 SmC 79 SmA 129 I

FPP

K 21.5 SmA 33.5 N 40.5 I

8CB
Landau-De Gennes free energy

Bend layers:
\[K \approx 10^{-11} \text{ N} \]

Compression layers:
\[B \approx 10^7 \text{ N/m}^2 \]

\[\langle u^2(r) \rangle = \frac{k_B T}{8 \pi \sqrt{KB}} \ln \left(\frac{L}{d} \right) \]

Fluctuations destroy layer ordering for large \(L \)
Types of order

\[G(r) \quad I(q) \]

constant \(\propto \delta(q - q_0) \)

\[r^{-\eta} \]

\[\propto \frac{1}{(q - q_0)^{2 - n^2 \eta}} \]

\[e^{-r/\xi} \]

\[\propto \frac{1}{\xi^2 (q - q_0)^2 + 1} \]
Caillé lineshapes

Full correlation function for a smectic phase:

\[G(r) = G(r_\perp, z) \propto \exp(-2 \eta \gamma_E) \left(\frac{2d}{r_\perp} \right)^2 \eta \exp \left[-\eta E_1 \left(\frac{r_\perp^2}{4\lambda z} \right) \right] \]

with \(\eta = \frac{q_0^2 k_B T}{8\pi \sqrt{KB}} \) and \(\gamma_E = 0.5772 \) is Euler’s constant

\(E_1(x) \) is the exponential integral

\(\lambda = \sqrt{K/B} \) is the penetration length

Asymptotic limits:

\[G(r_\perp, z) \propto z^{-\eta} \quad \text{normal to the layers} \]

\[G(r_\perp, z) \propto r_\perp^{-2\eta} \quad \text{parallel to the layers} \]
Smectic liquid crystal layering

J. Als-Nielsen et al.

Further examples:

Surfactant membranes
C.R. Safinya et al.

Smectic polymers
E. Nachaliel et al.

Block copolymers
P. Štěpánek et al.
Macromol. 35, 7287 (2002)
Capillary waves

Width of the liquid-vapour interface

\[\sigma^2 = \sigma_0^2 + \sigma_{cw}^2 \]

\[= \sigma_0^2 + \frac{k_B T}{2\pi \gamma} \ln \left(\frac{q_{\text{max}}}{q_{\text{min}}} \right) \]

Short-wavelength cut-off: \(q_{\text{max}} = 2\pi / a \)

Long-wavelength cut-off due to gravity: \(q_{\text{min}} = \Delta \rho g / \gamma \)

In practice the long-wavelength cut-off is not reached, and \(q_{\text{min}} \) is determined by the resolution of the x-ray set-up

Other example: Ordering of Langmuir monolayers

Smectic membranes

Typical sizes up to
50 mm
10 × 70 mm²

For neutron work: 50 × 50 mm²
but less control
1. Very well oriented (mosaic < 1 up to 10 mdegree).
2. Centro-symmetric: no substrate!
3. From two to thousands of layers (about 5 nm to 20 μm).
4. Cross-over from bulk behaviour (3D) in thick films to surface-dominated behaviour.
5. In thin films: model for physics of 2D systems.
Experimental situation
X-ray reflectivity

Simple interface:
\(\theta < \theta_c \approx 0.15^\circ \): total reflection
\(\theta > \theta_c \): Fresnel fall-off \(\sim \theta^{-4} \)

Model calculation of 30 nm membrane.
33-layer 7AB film

Troika beamline, ESRF
Contents

1. Introduction to smectic membranes

2. Static x-ray scattering
 Displacement correlation function
 Fluctuation profiles

3. Dynamic methods: XPCS and NSE

4. Dynamics of smectic fluctuations

Conclusions

Issues and outlook
Static x-ray scattering

Landau-De Gennes-Hołyst theory

\[F = \frac{1}{2} \int d^3 r \left\{ B \left[\frac{\partial u(r)}{\partial z} \right]^2 + K [\Delta_1 u(r)]^2 \right\} + \frac{1}{2} \gamma \int d^2 r [\nabla_\perp u(r_\perp, z = \pm \frac{1}{2} L)]^2 \]

Competition between surface \(\gamma \) and bulk \(\sqrt{BK} \)

The x-ray structure factor is the Fourier transform of the density-density correlation function:

\[S(q) = \int d^3 r \ G(r) \exp(i \mathbf{q} \cdot \mathbf{r}) \]

\[G(r) = \left\langle \exp \{iq_0 [u(r) - u(0)] \} \right\rangle = \exp \left[-\frac{1}{2} q_0^2 g(r) \right] \]
Fluctuation profiles

- Hydrodynamic fluctuations depending on \(\nu = \frac{\gamma}{\sqrt{BK}} \)
- Local fluctuations

Calculated profiles for

\(L = 2.94 \text{ nm} \)
\(\gamma = 0.0025 \text{ N/m} \)
\(K = 10^{-11} \text{ N} \)
\(B = 10^9 \text{ N/m}^2 \quad \nu < 1 \)
\(6.3 \times 10^7 \text{ N/m}^2 \quad \nu = 1 \)
\(5 \times 10^6 \text{ N/m}^2 \quad \nu > 1 \)
Experimental profiles

Thermal fluctuation profiles for FPP films of various thickness

1. Introduction to smectic membranes

2. Static x-ray scattering

3. Dynamic methods: XPCS and NSE
 - Coherent x-rays
 - X-ray photon correlation spectroscopy
 - Neutron spin echo

4. Dynamics of smectic fluctuations

Conclusions

Issues and outlook
Young’s experiment

Zero-order is coherent by definition
Transverse coherence length ξ_t

As $\Delta \theta$ arises from different points on the source: $\Delta \theta = D/R$

$$2\xi_t \Delta \theta = \lambda \rightarrow \xi_t = \frac{\lambda}{2 \Delta \theta}$$

$$\xi_t = \frac{\lambda}{2D/R}$$
Longitudinal coherence length ξ_l

\[2\xi_l = N\lambda \]

\[\lambda \]

A

\[\lambda - \Delta\lambda \]

B

\[2\xi_l = N\lambda = (N + 1)(\lambda - \Delta\lambda) \]

\[(N + 1)\Delta\lambda = \lambda \]

\[N \approx N + 1 = \frac{\lambda}{\Delta\lambda} \]

\[\xi_l = \frac{\lambda}{2\Delta\lambda} \]
Fraunhofer diffraction

Troïka beamline ESRF, $\lambda = 1.05$ Å.
Front pinhole 3.5 μm; back pinhole before detector 5 μm.

Photon correlation spectroscopy

Speckle reflects instantaneous position of scatterers. Motion by analyzing the intensity variation $I(q, t)$.

Intensity autocorrelation function: $\langle I(q, t)I(q, t + \tau) \rangle$

$$g_2(q, \tau) = \frac{\langle I(q, 0)I(q, \tau) \rangle}{\langle I(q, 0) \rangle^2}$$

$g_2(q, \tau)$ can be related to

$$g_1(q, \tau) = \langle E(q, t)E(q, t + \tau) \rangle$$

$\propto S(q, t)$

via the Siegert relation $g_2(q, \tau) = 1 + [g_1(q, \tau)]^2$.
Experimental situation Troïka beamline

Third/fifth harmonic of set of three undulators.
Source size: $928 \times 23 \ \mu m^2 (s_H \times s_V)$
Mono: Si(111) at $8 - 13$ keV
 λ at $1.55 - 0.96 \ \AA$, $\Delta \lambda / \lambda \approx 10^{-4}$
Pinhole: $10 \ \mu m \ \varnothing$ at $R = 44$ m

Coherence lengths:

$$\xi_t = \lambda R / (2s_H) \approx 10 \ \mu m$$
$$\xi_l = \lambda / (\Delta \lambda / \lambda) \approx 1.6 \ \mu m$$

At the Bragg position $\theta \approx 1.5^\circ \rightarrow$
path length difference: $2L \sin \theta = 1.6 \ \mu m \rightarrow L_{\text{max}} \approx 30 \ \mu m$
Storage ring

Bunch structure ESRF:

- 992 bunches, revolution time 2.7 μs
- uniformly distributed in continuous mode: 2.8 ns spacing

Avalanche photo diodes

Time resolution: \(\sim 0.7 \text{ ns risetime} \)

Baron, Hyperfine Interactions 125, 29 (2000)

Correlators

Standard: ALV5000/E correlator, fast extension down to 12.5 ns.

Correlator.com lag time 8 ns.
Dynamic methods

Length scale [Å]

Energy [eV]

Scattering vector q [Å⁻¹]

- Raman
- Brillouin
- IXS
- Spin-Echo
- INS
- XPCS
- NFS

Frequency [Hz]
Neutron Spin Echo

For an angular displacement \((\delta, \varphi)\)

\[
q_{\perp} = \frac{2\pi}{\lambda} \sqrt{(\cos(\varphi) \cos(\theta + \delta - \omega) - \cos(\theta + \omega))^2 + \sin^2(\varphi)}
\]
Neutron Spin-Echo Spectrometer

IN15 at the ILL (Grenoble)
Contents

1. Introduction to smectic membranes
2. Static x-ray scattering and conformality
3. Dynamic methods: XPCS and NSE
4. **Dynamics of smectic fluctuations**
 - Theoretical fluctuation modes
 - Experimental results

Conclusions

Issues and outlook
Fundamental relaxation time

Starting point: Landau-de Gennes-Holyst theory.

Calculate the time-dependent correlation function

\[C(q_\perp, z, z', t) = \langle u(q_\perp, z, 0) u(q_\perp, z', t) \rangle. \]

From the equation of motion involving viscous forces and restoring elastic force:

\[
\rho_0 \frac{\partial^2 u}{\partial t^2} = \eta_3 \frac{\partial}{\partial t} \nabla^2 u + (B \nabla^2_z - K q^4 \Delta^2_{\perp}) u
\]

Lowest root solution for \(q^2 \ll B / (\gamma L) \)

\[
\tau_1 = \eta_3 \left[\frac{2\gamma}{L} + \left(1 - \frac{\gamma^2}{3KB} \right)Kq^2_{\perp} \right]^{-1}
\]

For \(q_{\perp} = 0 \) we find

\[
\tau_1 = \frac{\eta_3 L}{2\gamma}
\]
Exponential relaxations

Price, Sorensen et al., PRL 82, 755 (1999)

Thick films
soft x-rays
4O.8 membranes

1. $L=0.23 \, \mu m$ ($N=105$)
2. $L=3.1 \, \mu m$ ($N=1430$)
3. $L=5.5 \, \mu m$ ($N=2500$)

Sikharulidze, Dolbnya, Fera, Madsen, Ostrovskii, de Jeu, PRL 88, 115503 (2002)
Full solution including inertia

Incompressible membranes \((B \to \infty)\): undulations only

\[
C(q_\perp, t) = \left\langle u(q_\perp, t)u^*(q_\perp, 0) \right\rangle = \frac{k_B T \tau_s \tau_f}{L \rho_0 (\tau_s - \tau_f)} \left[\tau_s \exp \left(-\frac{t}{\tau_s} \right) - \tau_f \exp \left(-\frac{t}{\tau_f} \right) \right].
\]

With values for the fast and slow relaxation:

\[
\tau_{s,f} \approx \frac{2 \rho_0}{\eta_3 q_\perp^2} \left(1 + \sqrt{1 - \frac{4 \rho_0}{\eta_3^2 q_\perp^4} \left(Kq_{\perp}^4 + \frac{2 \gamma}{L} q_\perp^2 \right)} \right)^{-1}.
\]

For small \(q_\perp\) critical wavelength fluctuations: \(q_{\perp c} = \frac{2}{\eta_3} \sqrt{\frac{2 \rho_0 \gamma}{L}}\).

Dispersion curves

\[[\text{Re}(1/\tau_{1,2})] (\mu s) \]

\[q_{\perp,c} \quad q_{\perp} (\text{nm}^{-1}) \]

Oscillations Exponential decay

Complex mode Slow mode

Fast (inertial) mode

Points 2 and 3 indicate transitions between oscillatory and exponential decay regimes.
FPP off-specular

Sikharulidze, Dolbnya, Fera, Madsen, Ostrovskii, de Jeu, PRL 88, 115503 (2002)
Various regimes

\[\tau_{s,f} \approx \frac{2\rho_0}{\eta_3 q_\perp^2} \left(1 \mp \sqrt{1 - \frac{4\rho_0}{\eta_3^2 q_\perp^4} \left(Kq_\perp^4 + \frac{2\gamma}{L} q_\perp^2 \right)} \right)^{-1} \]

Small \(q_\perp \):

\[\tau_{s,f} \approx \frac{2\rho_0}{\eta_3 q_\perp^2} \left(1 \mp \sqrt{1 - \frac{8\rho_0\gamma}{\eta_3^2 Lq_\perp^2}} \right)^{-1} \]

transition at

\[q_{\perp,c} = \frac{2}{\eta_3} \sqrt{\frac{2\rho_0\gamma}{L}} \]

\(q < q_{\perp,c} \)

\(q > q_{\perp,c} \)

Complex mode (oscillations):

\[\tau_s = \frac{\eta_3}{2\gamma / L + Kq_\perp^2} \]

\[\tau_s = \frac{\eta_3 L}{2\gamma} \]

\[\tau_s = \frac{\eta_3}{Kq_\perp^2} \]

\[\tau_s = \tau_f^* \]
Dispersion curves

\[\tau_1 = \frac{\eta_3}{2\gamma / L + Kq_{\perp}^2} \]
XPCS: 8CB

Specular \(q_\perp = 0 \)

\[q_\perp = 3.5 \times 10^{-3} \text{ nm}^{-1} \]
8CB: NSE results

Fit to stretched exponential: \[S(q_\perp, t) = \exp\left\{-\left(\frac{t}{\tau}\right)^{0.59}\right\} \]

\[\langle \tau \rangle = \int_0^\infty S(\mathbf{q}, t)dt = \frac{\Gamma(1/\beta)}{\beta} \tau'. \]
8CB: XPCS and NSE

Sikharulidze, Farago, Dolbnya, Madsen, de Jeu, PRL 91, 165504 (2003)
Homodyne/heterodyne detection

40.8 membrane, thickness 3.8 μm

Off-specular: \(\tau = 3.3 \, \mu s \rightarrow \) homodyne detection scheme
Specular: \(\tau = 6.2 \, \mu s \rightarrow \) heterodyne detection scheme.

Crystalline-B membranes

Start from the Landau-De Gennes-Hołyst theory to which solid-like elasticity is added.

Easy-shear approximation: C_{44} associated with shear of the layers is much smaller than the other constants:

\[
F_{\text{uniax}} = \frac{1}{8} \int d^3 r C_{44} [\nabla_\perp u(r)]^2.
\]

The effect of C_{44} is to renormalize the surface tension, as can be seen from the undulation part of the free energy:

\[
F_{\text{undul}} = \frac{1}{2} \int dxdy \left[LK (\Delta_\perp u)^2 + (2\gamma + \frac{1}{4} LC_{44}) (\nabla_\perp u)^2 \right]
\]

Hence Cr-B membranes fluctuate essentially as Sm-A ones, with an effective damping by $\gamma_{\text{eff}} = \gamma + \frac{1}{8} LC_{44}$.

Cr-B experiments in 4O.8

Fera, Dolbnya, Optiz, Ostrovskii, de Jeu, Phys. Rev. E 63, 020601 (2001)
Conclusions

1. Thanks to the high degree of control, smectic membranes provide excellent model systems to study low-dimensional physics.
2. XPCS can be done on smectic membranes at energies up to 13 keV and down to time scales of 10 ns.
3. A complex fundamental surface relaxation mode is observed, combining exponential decay with oscillatory behaviour.
4. Transitions from complex behaviour to exponential decay occur as a function of film thickness and of q_\perp, in agreement with theory.
5. Combination with neutron spin echo shows a transition from surface-tension damped modes to bulk elastic ones.
6. Both heterodyne (at the specular ridge) and homodyne (off-specular) detection schemes have been realized.
7. Thin crystalline-B films fluctuate essentially in the same way as smectic-A membranes, due to the easy shear associated with C_{44}.
THANKS

Liesbeth Mol
Andrea Fera
Irakli Sikharulidze PhD students

Joe Schindler
Ricarda Optitz
Daniel Sentenac post-docs

Boris Ostrovskii
Vladimir Kaganer
Arcadi Shalaginov guests

Gerhard Grübel/Anders Madsen
Igor Dolbnya ESRF

Bela Farago ILL
Thanks for your attention

Wim H. de Jeu

www.wimdejeu.nl